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1 Evaluation

1.1 User study

There is no perfect metric to measure the quality of generated images. Thus, we alleviate a possible
bias of selected metrics. We conducted a crowdsourced user study in two setups: side-by-side and
spot the mask. In the side-by-side setup a user has to choose a more realistic inpainting out of two
variants. The variants are provided by different methods for the same image and mask. An example
of the crowdsourcer UI for side-by-side setup is presented on Figure 1. In the spot the mask setup
users see only an inpainted image. Neither original image nor mask is provided. The user is asked
to click on an image, pointing a part that is likely inpainted. If there are more than one inpainted
region, a user has to point the one with more severe artifacts. An example of the crowdsourcer UI
for spot the mask setup is presented on Figure 2.

The side by side setup aims mostly at comparison between different inpainting methods, while
spot the mask also challenges the participants to distinguish real regions from inpainted ones. The
quantitative results of the user study are present in Table 1.
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Figure 1: Example of task for side-by-side setup for User Study. From left to right: first model
prediction, original image with mask, second model prediction. The assessors need to select the most
realistic prediction - left or right.

Figure 2: Example of task for spot the mask setup for User Study. From left to right: original image
with mask, inpainted image. Note: assessors were only shown the right image and were asked to click
on the most suspicious part.

Narrow masks Wide masks

Method RP ↑ Acc ↓ RP ↑ Acc ↓

LaMa-Fourier (ours) 50 0.0 34±1.7 500.0 54±1.7

LaMa-Dilation (ours) 48±2.5 37±1.7 46±2.4 55±1.9

CoModGAN 41±2.3 36±1.8 53±2.4 53±1.8

MADF 48±2.5 33±1.7 36±2.4 64±1.8

AOT GAN 43±2.4 39±1.9 25±2.1 77±1.6

GCPR 37±2.3 41±1.8 30±2.2 71±1.6

HiFill 20±1.9 45±1.9 22±2.1 73±1.6

DeepFill v2 38±2.4 41±1.8 37±2.3 57±1.8

EdgeConnect 31±2.2 42±1.8 22±2.0 66±1.8

Region-wise inp. 43±2.3 35±1.8 33±2.3 56±1.7

Region norm inp. 34±2.3 43±1.9 17±1.7 66±1.7

Table 1: Results of the user study on Places dataset in 512 × 512 resolution demonstrate that the
inpainting produced by our method is more preferable and less detectable compared to most methods.
While MADF comes close on narrow masks, it is uncooperative on wide ones. The CoModGAN
performs better on wide masks than the LaMa-Fourier, and is worse on the narrow masks, this makes
us hypothesise that methods are close in the performance on wide masks. In this case, we need more
samples to estimate standard deviation. We would like to note that LaMa-Fourier (27M params) has
significantly less trainable parameters than CoModGAN (109M params) and MADF (85M params).
RP states for the relative preference score in comparison with LaMa-Fourier in the side by side setup.
The score is expressed in percents. RP=50 means that the user cannot distinguish between a method
and LaMa-Fourier. RP< 50 means that inpainting results of a method are less realistic compared
to LaMa-Fourier. Acc is the percent of correctly localized inpainted areas in spot the mask setup.
Metrics are calculated separately for narrow and wide masks. The best values are marked bold. For
RegionWise Inpainting, DeepFillv2, EdgeConnect, we report only the best metrics of the two models
pre-trained or re-trained model. The standard deviations are obtained with bootstrap [2].

Quality control of the user study To prevent adaptation to the task, we set a limit to the
maximum number of 5 pages per assessor. For side-by-side task each sample was labeled indepen-
dently by 3 assessors, and for spot the mask by 5. In side-by-side task the assessors were shown 3
pictures: original image in the center with applied mask and two images inpainted with different
methods on the left and right. Assessors were asked to select the most realistic inpainted image out
of two. In spot the mask the assessors were only shown an inpainted image—no original image or
mask is provided—and they were asked to click on the most suspicious part of the image. Final score
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is obtained as percent of samples on which assessors guessed the mask position correctly.

1.2 Places - Full Metrics

Detailed metrics for all models on Places are presented in Table 2. Columns titled ”40-50% masked”
contain metrics calculated using the most hard samples in a test set — samples with 40-50% area
of an image covered by a mask. Columns ”All samples” contain metrics calculated with all samples
regardless of masked area. These numbers help to better understand robustness of various models
and training setups.

Places (512× 512)

Narrow masks Medium masks Wide masks Segm. masks

40-50% masked All samples 40-50% masked All samples 40-50% masked All samples All samples

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
LaMa-Fourier 12.7 0.168 0.63 0.090 11.7 0.212 1.30 0.112 12.0 0.243 2.21 0.135 5.35 0.058

LaMa-Dilated 13.3N5% 0.171N2% 0.68N8% 0.091N1% 13.1N12% 0.215N2% 1.60N22% 0.114N1% 14.2N18% 0.246N1% 2.81N27% 0.136N1% 5.54N3% 0.058N1%

LaMa-Regular 12.4H2% 0.167H1% 0.60H5% 0.089H1% 12.3N4% 0.215N1% 1.37N5% 0.114N1% 17.0N41% 0.252N4% 3.51N59% 0.139N3% 5.69N6% 0.059N3%

LaMa-Fourier-Shallow 13.4N6% 0.175N4% 0.72N13% 0.094N4% 12.2N4% 0.219N3% 1.39N7% 0.116N3% 12.4N3% 0.248N2% 2.31N5% 0.138N2% 5.61N5% 0.060N4%

LaMa-Regular-Deep 12.6H1% 0.167 0.63 0.090 12.5N6% 0.214N1% 1.58N21% 0.114N1% 13.5N12% 0.247N2% 2.62N18% 0.137N2% 5.59N4% 0.059N2%

LaMa-Regular
(narrow train masks)

12.7 0.168 0.68N7% 0.091N1% 15.1N29% 0.222N5% 1.92N47% 0.117N5% 23.5N95% 0.261N7% 5.41N145% 0.144N7% 6.50N22% 0.062N8%

CoModGAN [11] 16.3N28% 0.206N23% 0.82N30% 0.111N23% 12.4N6% 0.239N13% 1.34N3% 0.128N14% 10.4H14% 0.261N7% 1.82H18% 0.147N9% 6.40N20% 0.066N14%

AOT GAN [9] 14.1N11% 0.173N3% 0.79N25% 0.091N1% 15.9N36% 0.224N6% 2.29N75% 0.119N6% 24.4N103% 0.269N11% 5.94N169% 0.149N11% 7.34N37% 0.063N10%

RegionWise [3] 15.5N22% 0.191N14% 0.90N42% 0.102N14% 17.0N45% 0.234N11% 2.42N86% 0.125N11% 21.3N77% 0.269N10% 4.75N115% 0.149N11% 7.58N42% 0.066N14%

DeepFill v2 [8] 17.9N41% 0.197N17% 1.06N68% 0.104N16% 18.3N56% 0.244N15% 2.68N106% 0.130N16% 22.1N84% 0.278N14% 5.20N135% 0.155N15% 9.17N71% 0.068N18%

EdgeConnect [4] 18.9N49% 0.205N22% 1.33N110% 0.111N23% 21.9N86% 0.250N18% 3.66N181% 0.135N20% 30.5N153% 0.284N17% 8.37N279% 0.160N19% 9.44N76% 0.073N27%

RegionWise [3]
(wide train masks)

14.1N11% 0.180N7% 0.74N17% 0.095N6% 14.8N26% 0.229N8% 1.91N47% 0.121N8% 17.2N43% 0.259N7% 3.56N61% 0.144N7% 6.70N25% 0.064N11%

DeepFill v2 [8]
(wide train masks)

19.3N51% 0.200N19% 1.35N114% 0.107N19% 18.3N56% 0.238N12% 2.72N109% 0.127N13% 19.2N60% 0.264N9% 4.34N96% 0.148N10% 7.77N45% 0.066N15%

EdgeConnect [4]
(wide train masks)

28.9N127% 0.264N57% 2.78N339% 0.141N56% 23.2N97% 0.259N22% 3.91N200% 0.140N25% 30.0N149% 0.284N17% 7.94N259% 0.160N19% NAN NAN

Table 2: Detailed metrics for all models on the Places dataset.

1.3 CelebA-HQ - Full Metrics

Detailed metrics for all models on CelebA-HQ are presented in Table 3. Note that the ”40-50%”
columns, which contain metrics on the most difficult samples from the test sets: these are samples
with more than 40% of images covered by masks. These numbers help to better understand robustness
of various models and training setups.

CelebA-HQ (256× 256)

Narrow masks Medium masks Wide masks

40-50% masked All samples 40-50% masked All samples 40-50% masked All samples

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
LaMa-Fourier 22.7 0.132 7.26 0.085 34.1 0.145 6.13 0.080 27.8 0.168 6.96 0.098

LaMa-Dilated 25.1N10% 0.145N10% 8.75N21% 0.095N12% 38.8N14% 0.159N10% 7.02N14% 0.087N9% 29.6N7% 0.176N5% 7.62N9% 0.105N7%

LaMa-Regular 22.5H1% 0.139N5% 7.21H1% 0.089N5% 34.9N2% 0.151N4% 6.41N4% 0.084N5% 29.4N6% 0.177N6% 7.31N5% 0.104N5%

LaMa-Fourier-Shallow 25.0N10% 0.143N8% 7.96N10% 0.092N9% 35.9N5% 0.153N5% 6.56N7% 0.085N6% 30.0N8% 0.175N4% 7.31N5% 0.103N4%

LaMa-Dilated-Shallow 24.3N7% 0.148N12% 7.86N8% 0.096N13% 36.4N7% 0.155N7% 6.50N6% 0.086N8% 28.7N3% 0.177N5% 7.14N3% 0.104N6%

LaMa-Regular-Deep 22.8N1% 0.137N3% 7.50N3% 0.089N5% 35.2N3% 0.149N3% 6.53N6% 0.083N3% 28.9N4% 0.173N3% 7.34N5% 0.102N4%

LaMa-Regular
(narrow train masks)

23.4N3% 0.139N5% 7.46N3% 0.090N6% 34.8N2% 0.152N5% 6.51N6% 0.084N5% 29.6N7% 0.177N5% 7.42N7% 0.103N5%

CoModGAN [11] 35.9N58% 0.139N5% 16.8N131% 0.079H7% 48.4N42% 0.169N16% 19.4N216% 0.092N15% 64.4N132% 0.191N13% 24.4N250% 0.102N4%

AOT GAN [9] 21.0H7% 0.127H4% 6.67H8% 0.081H4% 39.1N15% 0.162N11% 7.28N19% 0.089N11% 40.4N46% 0.204N21% 10.3N48% 0.118N20%

RegionWise [3] 32.5N43% 0.188N42% 11.1N53% 0.124N46% 40.4N18% 0.179N24% 7.52N23% 0.101N25% 33.9N22% 0.205N22% 8.54N23% 0.121N23%

DeepFill v2 [8] 37.0N63% 0.201N52% 12.5N73% 0.130N53% 45.3N33% 0.189N30% 9.05N48% 0.105N31% 43.0N55% 0.214N28% 11.2N61% 0.126N28%

EdgeConnect [4] 29.2N29% 0.156N18% 9.61N32% 0.099N17% 40.5N19% 0.174N20% 7.56N23% 0.095N19% 34.7N25% 0.205N22% 9.02N30% 0.120N22%

RegionWise [3]
(wide train masks)

47.5N109% 0.246N86% 17.9N147% 0.164N94% 50.9N49% 0.220N51% 10.3N67% 0.124N55% 42.6N54% 0.233N39% 11.2N61% 0.140N42%

DeepFill v2 [8]
(wide train masks)

30.4N34% 0.169N28% 9.99N38% 0.108N27% 40.3N18% 0.173N19% 7.65N25% 0.095N19% 34.6N24% 0.196N16% 8.95N29% 0.115N17%

EdgeConnect [4]
(wide train masks)

55.5N144% 0.248N88% 18.3N152% 0.152N79% 40.2N18% 0.174N20% 7.79N27% 0.097N22% 32.7N18% 0.196N17% 8.43N21% 0.116N18%

Table 3: Detailed metrics for all models on CelebA-HQ dataset. Columns titled ”40-50% masked”
contain metrics calculated using the most hard samples in a test set — samples with 40-50% area
of an image covered by a mask. Columns ”All samples” contain metrics calculated with all samples
regardless of masked area.
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2 Masks

2.1 Random Mask Generation Algorithm

1 from np.random import uniform
2

3 def gen_large_mask(img_h, img_w, n):
4 """ img_h: int, an image height
5 img_w: int, an image width
6 marg: int, a margin for a box starting coordinate
7 p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
8

9 min_n_irr: int, min number of segments
10 max_n_irr: int, max number of segments
11 max_l_irr: max length of a segment in polygonal chain
12 max_w_irr: max width of a segment in polygonal chain
13

14 min_n_box: int, min bound for the number of box primitives
15 min_n_box: int, max bound for the number of box primitives
16 min_s_box: int, min length of a box side
17 max_s_box: int, max length of a box side"""
18

19 mask = ones(img_h, img_w)
20

21 if np.random.uniform(0,1) < p_irr: # generate polygonal chain
22 n = uniform(minn_irr, maxn_irr) # sample number of segments
23

24 for _ in range(n):
25 y = uniform(0, img_h) # sample a starting point
26 x = uniform(0, img_w)
27

28 a = uniform(0, 360) # sample angle
29 l = uniform(10, max_l_irr) # sample segment length
30 w = uniform(5, max_w_irr) # sample a segment width
31

32 # draw segment starting from (x,y) to (x_,y_) using brush of width w
33 x_ = x + l * sin(a)
34 y_ = y + l * cos(a)
35

36 gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
37 x, y = x_, y_
38 else: # generate Box masks
39 n = uniform(min_n_box, min_n_box) # sample number of rectangles
40

41 for _ in range(n):
42 h = uniform(min_s_box, max_s_box) # sample box shape
43 w = uniform(min_s_box, max_s_box)
44

45 x_0 = uniform(marg, img_w - marg + w) # sample upper-left coordinates of box
46 y_0 = uniform(marg, img_h - marg - h)
47

48 gen_box_mask(mask, size=(img_w, img_h), masked=(x_0, y_0, w, h))
49 return mask

Listing 1: The mask generation algorithm.

2.2 Segmentation Mask Generation Algorithm

In addition to random irregular masks we used segmentation-based masks, to ensure that our con-
clusions made with synthetic irregular masks are also valid for real-world objects, shapes and sizes.
The Segm mask set aims on modeling a real-world application of object removal, e.g. in a photo
editor. We used two datasets constructed in a similar way — one for validation and model selection
purposes and another for final evaluation — but with disjoint sets of images.

Segmentation-based validation and test sets were constructed using a segmentation-based mask
generator. This mask generator extracts silhouettes of foreground objects using Detectron2 [6] from
Places test large images, and randomly superimposes one of them onto 1,000 images sampled and
curated from Places val large so as to include mostly structural, man-made shapes in their back-
ground scenes. We constructed the validation subset similarly—using object silhouettes extracted
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Figure 3: Examples from the Segm test set for Places. First row: examples with the 0-10% masked
area range. Second row: examples with the 10-30% masked area range. (Existing object regions at
Step 2 are marked red. These regions are further used to superimpose an object silhouette in the
background region at Step 5. White area: target mask hole to inpaint. Note that red markings are
shown here only for a visualization purpose and do not appear in the actual 〈image, mask〉 pairs.)

from test large and images sampled from val large, ensuring the test set and the validation set are
strictly disjoint.

10-30% masked area range: In total 2,000 〈image, mask〉 pairs were created. Here, we sampled
500 512×512 crop images for a 10-20% masked area range, and 500 512×512 crop images for a 20-30%
masked area range. Then, each of the crop images was coupled with two random masks with hole
sizes within 10-15% and 15-20% over the 10-20% range, or 20-25% and 25-30% over the 20-30% range.

0-10% masked area range: Another group of 2,000 〈image, mask〉 pairs was created. Here,
we reused the same 1,000 crop images that had been created at the 10-30% range, where each crop
image was coupled with two random masks within 0-5% and 5-10%.

The detailed process of constructing the Segm test set is described as follows:

1. Prepare original images of structural scenes: We choose images from 157 curated scene
categories1 from Places val large, which more likely have structural, man-made complex shapes
in their background scenes

2. Mark existing object regions on the images at Step 1: We apply Detectron2 object
detector (ex. red regions shown in Figure 3) and filter masks by foreground categories.

3. Create a pool of foreground object silhouettes: We apply Detectron2 object detector to
images from Places test large and filter masks by foreground categories.

4. Choose target images at 10-20% (or 20-30%): First, we randomly sample hundreds of
images from those prepared at Step 1, which can fit a hole in the size of 10-20% (or 20-30%)
avoiding existing objects marked at Step 2. Then, we manually filter out a few inappropriate2

images. Finally, we randomly choose the final 500 images from the rest

1airplane cabin, airport terminal, alcove, alley, amphitheater, amusement park, apartment building/outdoor, aque-
duct, arcade, arch, archive, art gallery, artists loft, assembly line, atrium/public, attic, auditorium, bakery/shop,
balcony/exterior, balcony/interior, ballroom, banquet hall, barndoor, basement, basketball court/indoor, bath-
room, bazaar/indoor, bazaar/outdoor, beach house, bedchamber, bedroom, berth, boardwalk, boathouse, book-
store, booth/indoor, bow window/indoor, bowling alley, bridge, building facade, bus interior, bus station/indoor, cab-
in/outdoor, campus, canal/urban, candy store, carrousel, castle, chalet, childs room, church/indoor, church/out-
door, closet, conference center, conference room, construction site, corridor, cottage, courthouse, courtyard,
delicatessen, department store, diner/outdoor, dining hall, dining room, doorway/outdoor, dorm room, down-
town, driveway, elevator/door, elevator lobby, elevator shaft, embassy, entrance hall, escalator/indoor, fast-
food restaurant, fire escape, fire station, food court, galley, garage/outdoor, gas station, gazebo/exterior, gen-
eral store/indoor, general store/outdoor, greenhouse/outdoor, gymnasium/indoor, hangar/outdoor, hardware store,
home office, home theater, hospital, hotel/outdoor, hotel room, house, hunting lodge/outdoor, industrial area, in-
n/outdoor, jacuzzi/indoor, jail cell, kasbah, kitchen, laundromat, library/indoor, library/outdoor, lighthouse,
living room, loading dock, lobby, lock chamber, mansion, manufactured home, mausoleum, medina, mezzanine,
mosque/outdoor, movie theater/indoor, museum/outdoor, nursery, oast house, office, office building, office cubicles,
pagoda, palace, pantry, parking garage/indoor, parking garage/outdoor, pavilion, pet shop, porch, reception,
recreation room, restaurant patio, rope bridge, ruin, sauna, schoolhouse, server room, shed, shopfront, shop-
ping mall/indoor, shower, skyscraper, staircase, storage room, subway station/platform, synagogue/outdoor, televi-
sion room, temple/asia, throne room, tower, train station/platform, utility room, waiting room, wet bar, youth hostel

2Including none or very little portion of structural shapes (ex. image is mostly covered with the sky, sea, or woods)/
Huge human portrait covering the whole image/ Capture of another photo (ex. from a magazine)/ Thick outer frames
superimposed/ Text caption visibly superimposed/ CG rendered image/ No meaningful content available within (ex.
only cloudy textures given)/ Quality issues (ex. dark, over-exposed, blurry, etc. at extreme level)
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Figure 4: Comparison of 256×256 mask statistics produced by different random mask generators with
different settings. DeepFillv2 correspond to the statistics of the training masks that are produced
by DeepFillv2 generator. LaMa Training correspond to our training mask generator. Test Narrow,
Medium and Wide correspond to the statistics of 256 × 256 CelebA test sets. Masked area is an
average number of masked pixels per image. Width is calculated as a distance to the closest known
pixel, averaged over all masked pixels in an image.
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Figure 5: Comparison of 512×512 mask statistics produced by different random mask generators with
different settings. Test Narrow, Medium and Wide correspond to the statistics of Places 512×512 test
sets with random irregular masks. Segmentation reflect statistics of Places 512× 512 test set with
segmentation-based masks. Masked area is an average number of masked pixels per image. Width is
calculated as a distance to the closest known pixel, averaged over all masked pixels in an image.

5. Create 〈image, mask〉 pairs: For each of the 10-20% and 20-30% area ranges, we randomly
crop 512×512 regions out of each image from Step 4. For 0-10% masked area range, we reuse
same images as for 10-20% and 20-30%. For each crop, the mask generator superimposes an
object silhouette taken from the pool prepared at Step 3 onto the background region, by avoiding
existing object regions marked at Step 2.

2.3 Masks Settings and Statistics

Table 4 contains settings of random irregular mask generator that we use to train and evaluate our
models. We use ”256-Train” settings during training. The configuration ”256-Narrow” is only used
in ablation study to show importance of wide and diverse mask generation during training (Table 4
in paper).

Figure 4 contains descriptive statistics of the masks produced by different mask generation algo-
rithms and different settings. Our masks are much more aggressive and diverse compared to those of
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p irr
Irregular Masks Box-shaped masks

min n irr max n irr max l irr max w irr min n box max n box min s box max s box marg

256

Narrow* 1 4 50 40 10 - - - - -
Medium 0.77 4 5 100 50 1 5 10 50 0

Wide 0.77 1 5 200 100 1 3 30 150 10
Train 0.5 1 5 200 100 1 4 30 150 10

512
Narrow 1 4 70 100 20 - - - - -
Medium 0.77 4 10 200 100 1 5 30 150 0

Wide 0.77 1 5 450 250 1 4 30 300 10

Table 4: Parameters for random mask generation algorithm. Our models are trained with ”256-Train”
settings. *”256-Narrow” roughly correspond to the settings used in DeepFillv2 and EdgeConnect
repositories.

DeepFillv2. To obtain each chart, we generated 10000 samples and measured percentage of masked
area and mask width. Masked area corresponds to the ratio of masked pixels to total image area.
Width correponds to the average distance from each masked pixel to its closest known neighbor
(calculated using Euclidean Distance Transform).

3 Dataset splits

3.1 Places

Training To train most of our models, we use all high resolution images (approximately 512×512)
from Places-Standard3.

Validation To conduct in-training evaluation, to track overfitting and to choose the best checkpoint,
we prepared a validation set consisting of 2000 image-mask pairs. Images for validation set were
randomly sampled from high resolution validation subset of Places 4. Masks for validation set were
prepared using segmentation-based mask generation algorithm.

Test To conduct final evaluation, we prepared four test sets—three with irregular random masks
of different widths (narrow, medium, thick) and one with segmentation-based masks. Test sets with
random masks contain 30000 image-mask pairs and segmentation-based set contains 4000 pairs. All
images were randomly sampled from high resolution test part of Places 5.

3.2 CelebA-HQ

We use the train-val split used in DeepFill 6.

Training We use full training subset except 2000 images, which were held out for validation.

Validation To conduct in-training validation, to control overfitting and to select the best check-
point, we extract 2000 images from the training set. For each image in validation subset, we generate
three random masks.

Test To conduct final evaluation, we used full ”val” subset according to DeepFill split (see footnote).
Mask sets were prepared using random irregular generator with three different settings—to produce
narrow, medium and wide masks.

3Places Standard Train Large http://data.csail.mit.edu/places/places365/train_large_
places365standard.tar

4Places Standard Validation Large http://data.csail.mit.edu/places/places365/val_large.tar
5Places Standard Test Large http://data.csail.mit.edu/places/places365/test_large.tar
6https://drive.google.com/drive/folders/1lpluFXyWDxTY6wcjixQGWX8jxUUMlyBW
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4 Big LaMa 51M Examples

4.1 Big LaMa 51M positive examples

Please refer to Figure 6 and the anonymous URL in the caption for more positive examples.

Figure 6: Big LaMa 51M positive examples. More examples can be found at the anonymous link
https://bit.ly/3k0gaIK.
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4.2 Big LaMa 51M negative examples: Distortions, Bokeh, Perspective

Please refer to Figure 7 and the anonymous URL in the caption for more failure cases.

Figure 7: Big LaMa 51M negative examples: perspective distortion, complex backgrounds. More
examples can be found at the anonymous link https://bit.ly/3k0gaIK.
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4.3 Big LaMa 51M domain transfer examples

Please refer to Figure 8, 11 and the anonymous URL in the caption for more cases of successful
generalization to unseen domains.

Figure 8: Big LaMa 51M examples, domain generalization: music spectrogram, hystology image,
bird-eye view, Van Gogh painting, computer game. The method was trained on Places Challenge
dataset and never see such kind of data, still is able to generate reasonable inpaintings.

5 Discriminator

1 NLayerDiscriminator(
2 (model0): Sequential(
3 (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(2, 2))
4 (1): LeakyReLU(negative_slope=0.2, inplace=True)
5 )
6 (model1): Sequential(
7 (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(2, 2))
8 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
9 (2): LeakyReLU(negative_slope=0.2, inplace=True)

10 )

10



Figure 9: Big LaMa 51M examples, more examples of domain generalization: outpainting, MRI. The
method was trained on Places Challenge dataset and never saw such kind of data, yet it is able to
generate reasonable inpaintings.

11 (model2): Sequential(
12 (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(2, 2))
13 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
14 (2): LeakyReLU(negative_slope=0.2, inplace=True)
15 )
16 (model3): Sequential(
17 (0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(2, 2))
18 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
19 (2): LeakyReLU(negative_slope=0.2, inplace=True)
20 )
21 (model4): Sequential(
22 (0): Conv2d(512, 512, kernel_size=(4, 4), stride=(1, 1), padding=(2, 2))
23 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
24 (2): LeakyReLU(negative_slope=0.2, inplace=True)
25 )
26 (model5): Sequential(
27 (0): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), padding=(2, 2))
28 )
29 )

Listing 2: We used the following discriminator architecture for all LaMa models.
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6 Perceptual Losses Comparison Details

In this section, we describe the networks that were used as the feature extractors for perceptual
losses in the ablation study. The ResNet-based perceptual losses exploit the encoder part of PSPNet
model [10] as a feature extractor7.

We used the following variants of the base network:

(a) The ResNet50 with regular convolutions, that was pretrained on the classification ImageNet
dataset.

(b) The (a) model that is dilated post-hoc [1, 7]—the dilation of 2 is applied to the convolutions of
the third residual block, and the dilation of 4 is applied to the the convolutions of the fourth
block, while weights remain the same.

(c) The (b) model that is equipped with a decoder network, and is trained on a segmentation
problem on ADE20K dataset.

We evaluated the perceptual losses based in networks from steps a − c in the ablation study. In
all cases we used outputs of all four residual blocks as the features for the perceptual loss. For the
classification-based perceptual loss, we used VGG-19 model [5]8. In VGG network, perceptual loss
uses all activations from the first thirteen ReLUs.

We performed the selection of the perceptual loss weight α using the coordinate-wise beam-search
strategy separately for each variant. For final weights see Table 5.

Model Pretext
Problem

Dilation Weight

LHRFPL RN50 Segm. + 30

RN50 Clf. + 1
LClfPL RN50 Clf. - 1

VGG19 Clf. - 0.1

Table 5: The best weights for each perceptual loss variant. The RN states for ResNet50 arhitecture.
ClfPL Regular states for (a) network, ClfPL Dilated states (b) network, HRFPL—a high receptive
field perceptual losses—states for (c) model.

7https://github.com/CSAILVision/semantic-segmentation-pytorch
8https://pytorch.org/vision/stable/models.html#torchvision.models.vgg19
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7 LaMa-Dilated Details
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Figure 10: The architecture of LaMa Dilated network. The model is almost the same as LaMa Regular,
but regular convolutions in all residual blocks are substituted with MultiDilated Convolution
Blocks. Specifically, the input of each convolution block is split to four equal parts channel-wise.
Then, the regular convolution layer with appropriate padding and the chosen dilation size is applied
for each part separately. Finally, results of all four blocks are summed up.

8 Inference time comparison
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Figure 11: Inference time in sec/image of various inpainting techniques depending on resolution. The
results obtained on Nvidia 1080Ti, with batch size of 100 that fully loads GPU for all methods. The
results are averaged over 100 runs.
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